A stereoconvergent synthesis of the $\mathbf{C (1 9) - C (3 1)}$ fragment of scytophycin \mathbf{C}^{\dagger}

J. S. Yadav* and Md. Moinuddin Ahmed
Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India
Received 30 April 2002; revised 2 August 2002; accepted 15 August 2002

Abstract

The $\mathrm{C}(19)-\mathrm{C}(31)$ fragment of the anti-tumor macrolide, scytophycin C , was realized in a stereoconvergent manner utilizing a desymmetrization approach to create eight contiguous asymmetric centers from a common precursor. © 2002 Elsevier Science Ltd. All rights reserved.

Moore et al. in 1986^{1} first reported the isolation of a novel class of polyoxygenated 22-membered macrolides, scytophycins A-E from the cultured terrestrial blue-green alga Scytonema pseudohofmanni (Fig. 1). Structurally, scytophycins are closely related to swinholides, a group of 44-membered dimeric macrolides from Theonella swinhoei. ${ }^{2}$ They have exhibited potent cytotoxicity against a variety of human carcinoma cell lines, as well as broadspectrum antifungal activity. They act as cytotoxic agents by microfilament depolymerization ${ }^{3 a}$ and have been shown to circumvent P-glycoprotein medicated multi drug resistance in tumor cells, ${ }^{3 \mathrm{~b}}$ which gives them therapeutic potential for cancer patients.

To date, an elegant total synthesis of scytophycin C has been reported by Paterson. ${ }^{4}$ Other approaches deal with selective syntheses of important fragments. ${ }^{5}$

As a part of our ongoing interest in the synthesis of biologically active molecules, especially anti-tumor agents, ${ }^{6}$ our attention was drawn towards synthetic studies of this novel class of macrolide (Scheme 1)

The details of our approach towards the synthesis of scytophycin C are depicted in Scheme 1. A closer survey reveals two major fragments $\mathrm{C}(1)-\mathrm{C}(18)$ and $\mathrm{C}(19)-$ $\mathrm{C}(31)$. Herein we report a stereoconvergent synthesis of the $\mathrm{C}(19)-\mathrm{C}(31)$ fragment. This fragment is further broken into two smaller fragments, i.e. $\mathrm{C}(19)-\mathrm{C}(25)$ and $\mathrm{C}(26)-\mathrm{C}(31)$. They can be derived from a common precursor 7 which in turn is easily synthesized. ${ }^{6 a, c}$ The relative stereochemistry at $C(2)$ and $C(4)$ of the precursor 7 can be correlated to $\mathrm{C}(22), \mathrm{C}(24), \mathrm{C}(28)$ and $\mathrm{C}(30)$ of scytophycin C . The bicyclic compound 7 has five stereogenic centers and two prostereogenic $s p^{2}$ sites

Figure 1.

[^0]

Scheme 1.
which can be used for further functionalization (Scheme 2).

Synthesis of the $C(19)-C(25)$ fragment

We initiated our synthesis from precursor 7, which we had developed and utilized for a synthesis of rifamycin$S^{6 a}$ and (+)-discodermolide ${ }^{6 c}$ fragments wherein we had exploited the desymmetrization approach to create six stereogenic centers at once. For the synthesis of the $\mathrm{C}(19)-\mathrm{C}(25)$ fragment of scytophycin C , we prepared the triol 9 by an earlier reported method. ${ }^{6 a}$ The stereocenters of the triol 9 were firmly established on the

Scheme 2.
basis of our earlier report. ${ }^{6 a}$ The physical and spectroscopic data were found to be identical in all respects with those reported for the $\mathrm{C}(19)-\mathrm{C}(27)$ fragment of rifamycin-S. ${ }^{6 a}$ The resultant triol 9 was converted with 2,2-dimethoxypropane-CSA (cat.) into acetonide $\mathbf{1 0}$ (92%) which constituted the main precursor for the $\mathrm{C}(19)-\mathrm{C}(25)$ fragment. The alcohol $\mathbf{1 0}$ was oxidized to aldehyde 5^{7} (90%) using IBX in DMSO-THF, see Scheme 3.

Synthesis of the $\mathbf{C}(26)-\mathbf{C}(31)$ fragment

Asymmetric hydroboration of olefin 7 using (-)diisopinocamphenylborane gave the optically pure alcohol 11 (96%). Using the two-step sequence (PCC, B.V. oxidation), alcohol 11 was converted into the lactone $\mathbf{1 2}$ (76\%) in high optical purity.

The bicyclic lactone $\mathbf{1 2}$ was opened reductively with LiAlH_{4} to give the triol 13 (92%), the stereocenters of the triol 13 were confirmed in the same way as for fragment 9. Triol 13 was converted into the acetonide $\mathbf{1 4}(95 \%)$. The free hydroxyl moiety of $\mathbf{1 4}$ was protected as its benzyl ether using NaH and BnBr to give the benzyl ether $15(98 \%)$. The acetonide protection of 15 was cleaved with 2 N HCl in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ to give the diol $16(95 \%)$. The diol 16 was oxidatively cleaved by $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaIO}_{4}$ and the resultant acid was esterified with diazomethane to yield the ester 17 (60%) over two steps. The ester 17 was converted into the phosphonate $6^{8}(70 \%)$ by treatment with dimethyl methane phosphonate and n-BuLi. With this we have completed the synthesis of the required β-ketophosphonate, i.e. the $\mathrm{C}(26)-\mathrm{C}(31)$ fragment (Scheme 4).

Barium hydroxide induced HWE reaction-synthesis of the $\mathbf{C}(19)-\mathbf{C}(31)$ fragment

The key factor in realizing the successful synthesis of the $\mathrm{C}(19)-\mathrm{C}(31)$ fragment was to achieve an efficient Horner-Wadsworth-Emmons coupling between the sterically hindered aldehyde 5 and the β-ketophosphonate 6, as reported by Paterson. ${ }^{9}$ Accordingly β ketophosphonate 6 was treated with activated $\mathrm{Ba}(\mathrm{OH})_{2}$ in THF followed by addition of the aldehyde 5 in wet THF, to realize the desired (E)-enone $\mathbf{4}$ in a 95% yield. ${ }^{10}$ The double bond in (E)-enone 4 was selectively reduced by $\mathrm{LiAlH}_{4} / \mathrm{CuI}$ in THF as reported by Ashby ${ }^{11}$ to furnish the desired $\mathrm{C}(19)$ to $\mathrm{C}(31)$ fragment $8(80 \%)^{12}$ (Scheme 5).

In conclusion, this highly stereospecific synthesis of the $\mathrm{C}(19)-\mathrm{C}(31)$ fragment illustrates the dynamic utility of the precursor 7, and the desymmetrization approach to control the eight required stereocenters to yet another

Scheme 3. Reagents and conditions: (a) 2,2-DMP, CSA (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) IBX, DMSO-THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 4. Reagents and conditions: (a) (-)- $\mathrm{Ipc}_{2} \mathrm{BH},-23^{\circ} \mathrm{C}, 24 \mathrm{~h}, 3 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) m-CPBA, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (d) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0 \rightarrow 25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (e) 2,2-DMP, CSA (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) NaH , BnBr , THF, reflux, 3 h ; (g) $2 \mathrm{~N} \mathrm{HCl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (h) $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, 1: 1: 3 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{CCl}_{4}: \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$, 1 h ; (i) $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (j) $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, n-\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 5. Reagents and conditions: (a) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, 40: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{LiAlH}_{4} / \mathrm{CuI}$, THF $, 0 \rightarrow 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
important fragment of a biologically active molecule. Further studies towards the preparation of the $\mathrm{C}(1)-$ $\mathrm{C}(18)$ fragment of scytophycin C , leading to its total synthesis are on-going.

Acknowledgements

The author M.M.A. thanks CSIR, New Delhi for the award of fellowship.

References

1. (a) Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem. 1986, 51, 5300; (b) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J., Jr.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986, 58, 26; (c) Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Yoshida, W. Y. Tetrahedron Lett. 1993, 34, 5571.
2. Kitagawa, I.; Kobyashi, M.; Katori, T.; Yamashita, M.; Tanaka, J.; Doi, M.; Ishida, T. J. Am. Chem. Soc. 1990, 112, 3710.
3. (a) Patterson, G. M. L.; Smith, C. D.; Kimura, L. H.;

Britten, B.; Carmeli, S. Cell Motil. Cytoskeleton 1993, 24, 39; (b) Smith, C. D.; Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Cancer Res. 1993, 53, 1343.
4. (a) Paterson, I.; Watson, C.; Yeung, K.-S.; Wallace, P. A.; Ward, R. A. J. Org. Chem. 1997, 62, 452; (b) Paterson, I.; Yeung, K. S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935; (c) Paterson, I.; Watson, C.; Yeung, K.-S.; Ward, R.; Wallace, P. A. Tetrahedron 1998, 54, 11955.
5. (a) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261; (b) Paterson, I.; Cumming, J. G.; Smith, J. D. Tetrahedron Lett. 1994, 35, 3405; (c) Grieco, P. A.; Speake, J. D.; Yeo, K. S.; Miyashita, M. Tetrahedron Lett. 1998, 39, 1125; (d) Grieco, P. A.; Speake, J. D. Tetrahedron Lett. 1998, 39, 1275; (e) Roush, W. R.; Dilley, G. J. Tetrahedron Lett. 1999, 40, 4955.
6. (a) Yadav, J. S.; Rao, C. S.; Chandrasekhar, S.; Rama Rao, A. V. Tetrahedron Lett. 1995, 36, 7717; (b) Yadav, J. S.; Bandyopadhyay, A.; Kunwar, A. C. Tetrahedron Lett. 2001, 42, 4907; (c) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. Tetrahedron Lett. 2001, 42, 4713; (d) Yadav, J. S.; Sasmal, P. K. Tetrahedron Lett. 1997, 38, 8769; (e) Yadav, J. S.; Chandrashekar, S.; Sasmal, P. K. Tetrahedron Lett. 1997, 38, 8765.
7. Data for compound 5: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.70(3 \mathrm{H}, \mathrm{d}, J=6.67 \mathrm{~Hz}), 0.81(3 \mathrm{H}, \mathrm{d}, J=6.67 \mathrm{~Hz}), 1.1$ $(3 \mathrm{H}, \mathrm{d}, J=6.67 \mathrm{~Hz}), 1.30(6 \mathrm{H}, \mathrm{s}), 1.79-2.01(3 \mathrm{H}, \mathrm{m})$, $2.62-2.75(1 \mathrm{H}, \mathrm{m}), 3.40-3.52(1 \mathrm{H}, \mathrm{m}), 3.62-3.79(2 \mathrm{H}, \mathrm{m})$, $4.59(2 \mathrm{H}, \mathrm{ABq}), 7.29(5 \mathrm{H}, \mathrm{m}), 9.79(1 \mathrm{H}, \mathrm{s}) ;[\alpha]_{\mathrm{D}}^{25}+2.89(c$ 1.8, CHCl_{3}); IR (liquid film) 2825, $1735 \mathrm{~cm}^{-1}$; FABMS $m / z 335\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$: calcd: C , 71.82; H, 9.04. Found: C, 71.93; H, 9.19%.
8. Data for compound 6: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.05(3 \mathrm{H}, \mathrm{d}, J=6.33 \mathrm{~Hz}), 1.1(3 \mathrm{H}, \mathrm{d}, J=6.33 \mathrm{~Hz}), 1.7$ $(1 \mathrm{H}, \mathrm{m}), 2.1(1 \mathrm{H}, \mathrm{m}), 2.9-3.05(1 \mathrm{H}, \mathrm{m}), 3.15-3.3(1 \mathrm{H}, \mathrm{m})$, $3.4(1 \mathrm{H}, \mathrm{m}), 3.6(1 \mathrm{H}$, buried m's), $3.65(3 \mathrm{H}, \mathrm{s}), 3.7(3 \mathrm{H}$, s), $3.75(1 \mathrm{H}$, buried m's), $4.42(2 \mathrm{H}$, buried ABq$), 4.5(2 \mathrm{H}$, s), $7.25(10 \mathrm{H}, \mathrm{m})$; $[\alpha]_{\mathrm{D}}^{20}-28.34$ (c 0.6, CHCl_{3}); IR (liquid film): 1720, 1417, 1269, $1035 \mathrm{~cm}^{-1}$; FABMS m/z 471 $\left(\mathrm{M}^{+}+\mathrm{Na}\right), 341\left(\mathrm{M}^{+}-107\right)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{P}$: calcd: C, 64.27; H, 7.42. Found: C, 64.35; H, 7.43\%.
9. Paterson, I.; Yeung, K.-S.; Smaill, J. B. Synlett 1993, 774.
10. Data for compound 4: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.58 ($3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), 0.67 ($3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), 0.85 $(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 1.3(6 \mathrm{H}, \mathrm{s}), 1.5-1.7(3 \mathrm{H}, \mathrm{m}), 2.02-2.19(1 \mathrm{H}$, m), 2.5-2.7 $(1 \mathrm{H}, \mathrm{m}), 3.19-3.33(1 \mathrm{H}, \mathrm{m}), 3.35-3.5(3 \mathrm{H}, \mathrm{m})$, 3.59-3.79 (2H, m), 3.8-3.9 (1H, m), 4.4-4.62 (6H, m), 6.2 $(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 7.0(1 \mathrm{H}, \mathrm{dd}, J=7.69,15.38 \mathrm{~Hz})$, 7.19-7.39 ($15 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.13, 148.69, 139.02, 138.79, 138.73, 130.31, 128.31,
$128.23,128.14,127.74,127.66,127.52,127.45,127.34$, $127.29,126.98,126.87,126.84,126.78,97.98,84.59,84.43$, $83.35,73.39,73.23,73.12,72.03,66.23,39.93,37.65$, $36.89,36.19,36.04,30.18,19.54,17.60,13.95,12.41$, 12.34, 11.42; $[\alpha]_{\mathrm{D}}^{25}-31.34$ (c 0.6, CHCl_{3}); IR (liquid film): 1685, 1670, 1630, $1005 \mathrm{~cm}^{-1}$; FABMS $m / z 657\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{O}_{6}$: calcd: C, $76.79 ; \mathrm{H}, 8.59$. Found: C, 76.75; H, 8.63\%.
11. Ashby, E. C.; Lin, J. J.; Kovar, R. J. Org. Chem. 1976, 41, 1939.
12. Data for compound 8: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.65(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.8(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 0.85(3 \mathrm{H}$, $\mathrm{d}, J=6.1 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.22(3 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 1.17-1.28(2 \mathrm{H}$, overlapping m's), $1.3(6 \mathrm{H}, \mathrm{s})$, 1.8-196 (3H, m), 2.0-2.1 ($1 \mathrm{H}, \mathrm{m}$), 2.3-2.45 ($1 \mathrm{H}, \mathrm{m}$), 2.6-2.8 ($1 \mathrm{H}, \mathrm{m}$), 2.85-2.96 $(1 \mathrm{H}, \mathrm{m}), 3.3-3.5(5 \mathrm{H}, \mathrm{m})$, $3.55-3.7(1 \mathrm{H}, \mathrm{m}), 3.8-3.95(1 \mathrm{H}, \mathrm{m}), 4.45-4.65(6 \mathrm{H}, \mathrm{m})$, 7.2-7.39 ($15 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 213.14, 139.25, 138.99, 138.87, 128.45, 128.36, 128.24, 127.89, $127.67,127.63,127.55,127.39,127.21,126.88,126.76$, $126.71,126.68,97.78,84.51,84.33,83.25,74.39,73.23$, $73.17,73.09,70.13,45.29,38.33,37.87,36.89,36.29$, $36.04,32.49,30.27,19.45,18.66,14.37,13.95,12.13$, 10.95; $[\alpha]_{\mathrm{D}}^{25}-29.31$ (c 1.3, CHCl_{3}); IR (liquid film): 1720, 1455, $1096 \mathrm{~cm}^{-1}$; FABMS $m / z 659\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{6}$: calcd: C, $76.56 ; \mathrm{H}, 8.87$. Found: C, 76.67; H, 8.69\%.

[^0]: Keywords: scytophycin C; common precursor; desymmetrization; stereoconvergent.

 * Corresponding author. Tel.: +91-040-7193434; fax: +91-040-7160512; e-mail: yadav@iict.ap.nic.in
 ${ }^{\dagger}$ IICT Communication No. 020305.

