

A stereoconvergent synthesis of the C(19)–C(31) fragment of scytophycin C^{\dagger}

J. S. Yadav* and Md. Moinuddin Ahmed

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 30 April 2002; revised 2 August 2002; accepted 15 August 2002

Abstract—The C(19)–C(31) fragment of the anti-tumor macrolide, scytophycin C, was realized in a stereoconvergent manner utilizing a desymmetrization approach to create eight contiguous asymmetric centers from a common precursor. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Moore et al. in 1986¹ first reported the isolation of a novel class of polyoxygenated 22-membered macrolides, scytophycins A–E from the cultured terrestrial blue-green alga *Scytonema pseudohofmanni* (Fig. 1). Structurally, scytophycins are closely related to swinholides, a group of 44-membered dimeric macrolides from *Theonella swin-hoei.*² They have exhibited potent cytotoxicity against a variety of human carcinoma cell lines, as well as broadspectrum antifungal activity. They act as cytotoxic agents by microfilament depolymerization^{3a} and have been shown to circumvent P-glycoprotein medicated multi drug resistance in tumor cells,^{3b} which gives them therapeutic potential for cancer patients.

To date, an elegant total synthesis of scytophycin C has been reported by Paterson.⁴ Other approaches deal with selective syntheses of important fragments.⁵ As a part of our ongoing interest in the synthesis of biologically active molecules, especially anti-tumor agents,⁶ our attention was drawn towards synthetic studies of this novel class of macrolide (Scheme 1)

The details of our approach towards the synthesis of scytophycin C are depicted in Scheme 1. A closer survey reveals two major fragments C(1)-C(18) and C(19)-C(31). Herein we report a stereoconvergent synthesis of the C(19)-C(31) fragment. This fragment is further broken into two smaller fragments, i.e. C(19)-C(25) and C(26)-C(31). They can be derived from a common precursor 7 which in turn is easily synthesized.^{6a,c} The relative stereochemistry at C(2) and C(4) of the precursor 7 can be correlated to C(22), C(24), C(28) and C(30) of scytophycin C. The bicyclic compound 7 has five stereogenic centers and two prostereogenic sp^2 sites

Figure 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01705-7

Keywords: scytophycin C; common precursor; desymmetrization; stereoconvergent.

^{*} Corresponding author. Tel.: +91-040-7193434; fax: +91-040-7160512; e-mail: yadav@iict.ap.nic.in

[†] IICT Communication No. 020305.

which can be used for further functionalization (Scheme 2).

Synthesis of the C(19)–C(25) fragment

We initiated our synthesis from precursor 7, which we had developed and utilized for a synthesis of rifamycin- S^{6a} and (+)-discodermolide^{6c} fragments wherein we had exploited the desymmetrization approach to create six stereogenic centers at once. For the synthesis of the C(19)–C(25) fragment of scytophycin C, we prepared the triol 9 by an earlier reported method.^{6a} The stereocenters of the triol 9 were firmly established on the

Scheme 2.

basis of our earlier report.^{6a} The physical and spectroscopic data were found to be identical in all respects with those reported for the C(19)–C(27) fragment of rifamycin-S.^{6a} The resultant triol **9** was converted with 2,2-dimethoxypropane–CSA (cat.) into acetonide **10** (92%) which constituted the main precursor for the C(19)–C(25) fragment. The alcohol **10** was oxidized to aldehyde **5**⁷ (90%) using IBX in DMSO–THF, see Scheme 3.

Synthesis of the C(26)–C(31) fragment

Asymmetric hydroboration of olefin 7 using (–)diisopinocamphenylborane gave the optically pure alcohol 11 (96%). Using the two-step sequence (PCC, B.V. oxidation), alcohol 11 was converted into the lactone 12 (76%) in high optical purity.

The bicyclic lactone 12 was opened reductively with LiAlH₄ to give the triol 13 (92%), the stereocenters of the triol 13 were confirmed in the same way as for fragment 9. Triol 13 was converted into the acetonide 14 (95%). The free hydroxyl moiety of 14 was protected as its benzyl ether using NaH and BnBr to give the benzyl ether 15 (98%). The acetonide protection of 15 was cleaved with 2N HCl in THF–H₂O to give the diol 16 (95%). The diol 16 was oxidatively cleaved by RuCl₃·3H₂O/NaIO₄ and the resultant acid was esterified with diazomethane to yield the ester 17 (60%) over two steps. The ester 17 was converted into the phosphonate 6^8 (70%) by treatment with dimethyl methane phosphonate and *n*-BuLi. With this we have completed the synthesis of the required β -ketophosphonate, i.e. the C(26)–C(31) fragment (Scheme 4).

Barium hydroxide induced HWE reaction-synthesis of the C(19)-C(31) fragment

The key factor in realizing the successful synthesis of the C(19)–C(31) fragment was to achieve an efficient Horner–Wadsworth–Emmons coupling between the sterically hindered aldehyde **5** and the β -ketophosphonate **6**, as reported by Paterson.⁹ Accordingly β ketophosphonate **6** was treated with activated Ba(OH)₂ in THF followed by addition of the aldehyde **5** in wet THF, to realize the desired (*E*)-enone **4** in a 95% yield.¹⁰ The double bond in (*E*)-enone **4** was selectively reduced by LiAlH₄/CuI in THF as reported by Ashby¹¹ to furnish the desired C(19) to C(31) fragment **8** (80%)¹² (Scheme 5).

In conclusion, this highly stereospecific synthesis of the C(19)-C(31) fragment illustrates the dynamic utility of the precursor 7, and the desymmetrization approach to control the eight required stereocenters to yet another

Scheme 3. Reagents and conditions: (a) 2,2-DMP, CSA (cat.), CH₂Cl₂, 25°C, 1 h; (b) IBX, DMSO-THF, 25°C, 2 h.

Scheme 4. Reagents and conditions: (a) (-)-Ipc₂BH, -23°C, 24 h, 3N NaOH, 30% H₂O₂, 25°C, 6 h; (b) PCC, CH₂Cl₂, 25°C, 3 h; (c) *m*-CPBA, NaHCO₃, CH₂Cl₂, 25°C, 10 h; (d) LiAlH₄, THF, $0 \rightarrow 25^{\circ}$ C, 4 h; (e) 2,2-DMP, CSA (cat.), CH₂Cl₂, 25°C, 1 h; (f) NaH, BnBr, THF, reflux, 3 h; (g) 2N HCl, THF/H₂O, 25°C, 1 h; (h) RuCl₃·3H₂O, NaIO₄, 1:1:3 CH₃CN:CCl₄:H₂O, 25°C, 1 h; (i) CH₂N₂ in ether, 0°C, 15 min; (j) (MeO)₂ P(O)Me, *n*-BuLi, THF, -78°C, 1 h.

Scheme 5. Reagents and conditions: (a) $Ba(OH)_2 \cdot 8H_2O$, 40:1 THF/H₂O, 25°C, 1 h; (b) LiAlH₄/CuI, THF, $0 \rightarrow 25$ °C, 30 min.

important fragment of a biologically active molecule. Further studies towards the preparation of the C(1)–C(18) fragment of scytophycin C, leading to its total synthesis are on-going.

Acknowledgements

The author M.M.A. thanks CSIR, New Delhi for the award of fellowship.

References

- (a) Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem. 1986, 51, 5300; (b) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J., Jr.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986, 58, 26; (c) Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Yoshida, W. Y. Tetrahedron Lett. 1993, 34, 5571.
- Kitagawa, I.; Kobyashi, M.; Katori, T.; Yamashita, M.; Tanaka, J.; Doi, M.; Ishida, T. J. Am. Chem. Soc. 1990, 112, 3710.
- 3. (a) Patterson, G. M. L.; Smith, C. D.; Kimura, L. H.;

Britten, B.; Carmeli, S. *Cell Motil. Cytoskeleton* **1993**, *24*, 39; (b) Smith, C. D.; Carmeli, S.; Moore, R. E.; Patterson, G. M. L. *Cancer Res.* **1993**, *53*, 1343.

- (a) Paterson, I.; Watson, C.; Yeung, K.-S.; Wallace, P. A.; Ward, R. A. J. Org. Chem. 1997, 62, 452; (b) Paterson, I.; Yeung, K. S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935; (c) Paterson, I.; Watson, C.; Yeung, K.-S.; Ward, R.; Wallace, P. A. Tetrahedron 1998, 54, 11955.
- (a) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261; (b) Paterson, I.; Cumming, J. G.; Smith, J. D. Tetrahedron Lett. 1994, 35, 3405; (c) Grieco, P. A.; Speake, J. D.; Yeo, K. S.; Miyashita, M. Tetrahedron Lett. 1998, 39, 1125; (d) Grieco, P. A.; Speake, J. D. Tetrahedron Lett. 1998, 39, 1275; (e) Roush, W. R.; Dilley, G. J. Tetrahedron Lett. 1999, 40, 4955.
- (a) Yadav, J. S.; Rao, C. S.; Chandrasekhar, S.; Rama Rao, A. V. Tetrahedron Lett. 1995, 36, 7717; (b) Yadav, J. S.; Bandyopadhyay, A.; Kunwar, A. C. Tetrahedron Lett. 2001, 42, 4907; (c) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. Tetrahedron Lett. 2001, 42, 4713; (d) Yadav, J. S.; Sasmal, P. K. Tetrahedron Lett. 1997, 38, 8769; (e) Yadav, J. S.; Chandrashekar, S.; Sasmal, P. K. Tetrahedron Lett. 1997, 38, 8765.

- 7. Data for compound **5**: ¹H NMR (200 MHz, CDCl₃) δ 0.70 (3H, d, J=6.67 Hz), 0.81 (3H, d, J=6.67 Hz), 1.1 (3H, d, J=6.67 Hz), 1.30 (6H, s), 1.79–2.01 (3H, m), 2.62–2.75 (1H, m), 3.40–3.52 (1H, m), 3.62–3.79 (2H, m), 4.59 (2H, ABq), 7.29 (5H, m), 9.79 (1H, s); [α]_D²⁵ +2.89 (*c* 1.8, CHCl₃); IR (liquid film) 2825, 1735 cm⁻¹; FABMS m/z 335 (M⁺+H). Anal. calcd for C₂₀H₃₀O₄: calcd: C, 71.82; H, 9.04. Found: C, 71.93; H, 9.19%.
- 8. Data for compound **6**: ¹H NMR (200 MHz, CDCl₃) δ 1.05 (3H, d, J=6.33 Hz), 1.1 (3H, d, J=6.33 Hz), 1.7 (1H, m), 2.1 (1H, m), 2.9–3.05 (1H, m), 3.15–3.3 (1H, m), 3.4 (1H, m), 3.6 (1H, buried m's), 3.65 (3H, s), 3.7 (3H, s), 3.75 (1H, buried m's), 4.42 (2H, buried ABq), 4.5 (2H, s), 7.25 (10H, m); [α]_D²⁰ –28.34 (*c* 0.6, CHCl₃); IR (liquid film): 1720, 1417, 1269, 1035 cm⁻¹; FABMS *m/z* 471 (M⁺+Na), 341 (M⁺-107). Anal. calcd for C₂₄H₃₃O₆P: calcd: C, 64.27; H, 7.42. Found: C, 64.35; H, 7.43%.
- 9. Paterson, I.; Yeung, K.-S.; Smaill, J. B. Synlett 1993, 774.
- 10. Data for compound **4**: ¹H NMR (200 MHz, CDCl₃) δ 0.58 (3H, d, J=6.9 Hz), 0.67 (3H, d, J=6.9 Hz), 0.85 (3H, d, J=6.9 Hz), 1.05 (3H, d, J=6.9 Hz), 1.12 (3H, d, J=6.9 Hz), 1.3 (6H, s), 1.5–1.7 (3H, m), 2.02–2.19 (1H, m), 2.5–2.7 (1H, m), 3.19–3.33 (1H, m), 3.35–3.5 (3H, m), 3.59–3.79 (2H, m), 3.8–3.9 (1H, m), 4.4–4.62 (6H, m), 6.2 (1H, d, J=15.4 Hz), 7.0 (1H, dd, J=7.69, 15.38 Hz), 7.19–7.39 (15H, m); ¹³C NMR (75 MHz, CDCl₃) δ 203.13, 148.69, 139.02, 138.79, 138.73, 130.31, 128.31,

128.23, 128.14, 127.74, 127.66, 127.52, 127.45, 127.34, 127.29, 126.98, 126.87, 126.84, 126.78, 97.98, 84.59, 84.43, 83.35, 73.39, 73.23, 73.12, 72.03, 66.23, 39.93, 37.65, 36.89, 36.19, 36.04, 30.18, 19.54, 17.60, 13.95, 12.41, 12.34, 11.42; $[\alpha]_{\rm D}^{25}$ -31.34 (*c* 0.6, CHCl₃); IR (liquid film): 1685, 1670, 1630, 1005 cm⁻¹; FABMS *m*/*z* 657 (M⁺+H). Anal. calcd for C₄₂H₅₆O₆: calcd: C, 76.79; H, 8.59. Found: C, 76.75; H, 8.63%.

- 11. Ashby, E. C.; Lin, J. J.; Kovar, R. J. Org. Chem. 1976, 41, 1939.
- 12. Data for compound 8: ¹H NMR (200 MHz, CDCl₃) δ 0.65 (3H, d, J=6.4 Hz), 0.8 (3H, d, J=6.1 Hz), 0.85 (3H, d, J=6.1 Hz), 1.05 (3H, d, J=6.4 Hz), 1.22 (3H, d, J=6.4 Hz), 1.17–1.28 (2H, overlapping m's), 1.3 (6H, s), 1.8-196 (3H, m), 2.0-2.1 (1H, m), 2.3-2.45 (1H, m), 2.6-2.8 (1H, m), 2.85-2.96 (1H, m), 3.3-3.5 (5H, m), 3.55-3.7 (1H, m), 3.8-3.95 (1H, m), 4.45-4.65 (6H, m), 7.2-7.39 (15H, m); ¹³C NMR (75 MHz, CDCl₃) δ 213.14, 139.25, 138.99, 138.87, 128.45, 128.36, 128.24, 127.89, 127.67, 127.63, 127.55, 127.39, 127.21, 126.88, 126.76, 126.71, 126.68, 97.78, 84.51, 84.33, 83.25, 74.39, 73.23, 73.17, 73.09, 70.13, 45.29, 38.33, 37.87, 36.89, 36.29, 36.04, 32.49, 30.27, 19.45, 18.66, 14.37, 13.95, 12.13, 10.95; [a]²⁵_D -29.31 (c 1.3, CHCl₃); IR (liquid film): 1720, 1455, 1096 cm⁻¹; FABMS m/z 659 (M⁺+H). Anal. calcd for C₄₂H₅₈O₆: calcd: C, 76.56; H, 8.87. Found: C, 76.67; H, 8.69%.